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Acoustic analysis for a moving source with application

to an isospeed ocean

G.M. Jacyna and M.J. Jacobson

Rensselaer Polytechnic Institute, Troy, New York 12181

J.G. Clark

Institute for Acoustical Research, Miami, Florida 33130

Using ray theory, a general analysis is presented for the

treatment cf the effects of sound-source :noticn on the total

acoustic field at a fixed receiving point. Sound speed is

depth-dependent and the cw source follows an arbitrary path

with arbitrary velocity. The received signal is interpreted

as a waveform of arbitrary frequency whose amplitude and phase

are time-dependent. Application of the theory is made

to a constant sound-speed channel in which the source follows

a short straight-line path with constant speed, and a linearized

acoustic model is developed. Both primary and cumulative

acoustic phase are examined as functions of time for various

source-trajectory directions. An averaged Doppler-shift

frequency, as well as unaveraged source frequency, is considered.

Maximum phase change occurs for radial source motion and minimum

change occurs for circumferential motion. Finally, acoustic

phase is investigated when the source follows a long straight-

line path. An approximate formula is derived for cumulative

phase, which is found to be a hyperbolic function of time.
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INTRODUCTION .1
Ray theory has been used extensively in the study of acoustL.J

transmissions in an underwater channel, where the position of

both a point source and point receiver are assumed fixed. Aspects

of the roving sourca problem have been treated in relation to its

effects on radar. 1 ' 2 ' 3 However, results are not generally

applicable in an underwater environment because refraction,

boundary reflection, the coherent summation of multiple arrivals,

and other effects are not usually considered. Only recently

have investigations been directed toward consideration of the

movinq source problem in underwater acoustics. 4 '5 Computer results

for total-field phase and amplitude were presented in the case

of a source moving radially outward at fixed speed from a fixed

receiver, when a specific deep-water sound-speed profile is

assumed.

"The intent of this paper is twofold. We wish to present an

analytical technique whereby a stationary sound-source

problem can be transformed into a moving source problem,

ircluding a careful explanation of Doppler effects for a cw

sound source. In addition, to illustrate the technique, we

consider a specific moving source problem in an isospeed channel.

The velocity of the source is chosen constant, but its direction

with respect to a fixed receiver is not restricted to the radial

case. The total acoustic field is analyzed for both short-and

long-range runs of the source.

In Sec. I, a general ray-theory treatment of the moving

source proble!I is investigated, in which a general technique
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is formulated for determining Doppler effects for a cw source

movng itharbil -ary velocity over an arbitrary smooth cuzve

in three-dimensional space. A discussion of the effects of

source motion on ray geometry, boundary reflection theories,

spreading loss, arnd travel time leads

to total-field equations. In an illustration of the general

F approach, Sec. II deals with a specific moving source problem

for the case of a constant sound-speed medium, bounded by a

horizontal surface and bottom, where both the sound source and

receiving point are located on the ocean bottom, and where the

source is assumed to follow a straight-line path with consta~nt

speed. General equations developed in Sec. I are used to construct

the total-field phase and amplitude as a function of receiver

time. In Sec. III, certain restrictions are imposed, under

which a linearized model of the relationship between acoustic

phase and receiver time is developed and explored in detail.

* Phase variation for a source following a long straight-line path

with constant speed v is examined in Sec. IV. In particular,

a relation between phase and receiver time is developed and

used in sampling phav%- along the entire source trajectory. In

addition, an approximate expression for relative cumnulative I

phase for all receiv'er times is derived. Section V summarizes

the principal re-ults of this paper.

I. GENERAL TREATMENT

We begin by taking a receiving point a. to lie at the

origin of a Cattesian system in which the x and y axes are

horizontal and the z axis is vertical. Suppose that, at any
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instant in time, a point sound source • also lies in the x-y

plane and has velocity v with corresponding speed denoted by v.

It is well known that, for "line of sight" transmission, as

shown in Fig. 1(a), the frequency fR detected at the receiver
6

differs from the frequency f emitted at the source. If the

distance between the source and receiver remains constant, the

wavelength detected at R is X = c/f, where c is the (constant)

speed of sound. Hcwever, if the source moves as shown in

Fig. 1(a), then at any instant in time it is effectively moving

away from C. witn a speed v cos p, when 0<_<_r/2 rad. The motion

is toward Oq for T/2(,½'J-T7 rad. If R describes the receiver-

source position vect-r at any instant in time, where R is the

corresponding distance, then the resultant wavelength detected

at the receiver a time R/c later is equal to

= (c+v cos,) /f, (1)

and the resultant frequency is

f c/A'R = f [ + (v/c)cos]-I (2)

In the case of radial source motion, we find that

S= f(l -, v/c) , (3)

where the plus sign corresponds to ' = 0 and the minus sign to

If) = r. In essence, the term v cosý can be interpreted as the

scalar projection' of the velocity v onto the negati-e ray

direction, where in this case the negative ray dicection is



I.
that of R. Letting v denote this scalar projection, we may

: •y p

write

-1
f f(l v /C)' . (4)

The same technique can be applied when a moving source

follows an arbitrary path r with arbitrary velocity in three-

dimensional space where the sound speed is a function of depth,

the source and receiver are at arbitrary depths, and the source

depth may change with time. Let R(t) denote the position vector

from the receiver to the source at a time t, and let v(t) - dt

denote the corresponding velocity vector, as shown in Fig. l(b).

Even when sound speed is constant, the possibility of boundary

reflections leads to a family of rays which propagate from the

source to the receiver. If we let 6 (t) denote the angle at
n

the source of the nth ray, measured from the x' direction, and

let un(t) denote the unit vector associated with the negative

nth-ray direction at time t as shown in Fig. I (b), then

A A A

u (t) = cos 8 (t) i' + sil 0 (t) k (5)
.Vn n O n

where i' and k are unit vectors in the x' and z directions,

respectively. Note that x' measures horizontal directed

distance in the vertical plane containing the ray and that

C0 < 0(0 >0) for a ray directed upward (downward) at the source.
n n

The scal.ar projection of v(t) onto u (t) is
AA~n

v (t) = v(t).u (t) llr(t) cos p(t) (6)
p W •n

where the angle '(t) is determined by v and u when their

rMA.i AM



initial points coincide. Applyingc Eq. 5 to Eq. 6,

v (t) t v (t)i+v (t)j+v (t)k].'cose (t)i'+sine (t)kl
pX OA06Y M 2 MA ni n

r A A A A ArA~i1/2

+v (tsine (t) ,(7)
z n

where i, j, and k ate unit vectors in the x,y, and z directions,
OM M

respectively, and

IRx +R(t)j][R (t + R2(t^)]()

MA A. A A.

where r(t) :i
AA.-

Since the source is moving, the frequency associated with

the nth ray detected by the receiver at a time t is not the

frequency correspondinq to the source position at t. Rather,

it is that corresponding to the source position at an earlier

time. Letting t ndescribe the time associated with the

continuou6 emission of the nth ray from the source, trierp

exists a relationship between source time t and receiver

time t given by

n ~nn
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where Tn is the travel time of the nth ray. Observing from Eq. 10

that tn is an implicit function of t, we have

t= F (t) , (11)Sn n

so that T n(tn) may be rewritten as T n(t). Clearly, the frequency

of the nth ray detected at a time t is the frequency of the ray

emitted at the time t - t-T (t). Evaluating Eq. 7 at t-t and
n n n

using this transformation,

Vp(t) V p(t) Rx(t)vX(t)+Ryt(t)v (t) cosn(t) R x Y)

v.-v(t)sinn (t) , (12)
z n

where R xy~z(t) = Rxoyz (F n(t)], v x~yZ(t)=v Xyz(F n(t)], and

0 n(t) = 0n (F n(t)]. The corresponding Zrequency at the receiver,

analogous to Eq. 4, is

2 2 -1/2f Rn(t) = f 1+{[R x(t)v (t)+R (t)v (t)lcosn (t)[R (t)+R (t)]-Rn[ x x y y n y

-- ] -I-

+ v (t)sinn (t))c-(t) , (13)
z n

where c(t) represents the sound speed at the source depth at

receiver time t. If Eq. 9 is used in the case where r lies in

the x-y plane, then Eq. 13 simplifies to

fRn(t) = f[M1+(t ) vt) e n(t)Wi-(t)] . (14)

At the receiver, the contribution of the nth ray at time t is

V (t) = A (tn)sin Rn (t)+S (tn
n n n n+n

= Ain Rn L nt + n

.i
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where tn= t-Tn(t) is given by Eqs. A0 and 11, An (t)=An [Fn (t)]

is amplitude, S (t)=S [F (t)j is phase'change resulting from
11 n ni

surface and/or bottom reflections, if any, and w (t)=27• (t).
th Rn Rn

If the n ray experiences no boundary reflections, then S n(t)-0.

Substituting Eq. 13 into Eq. 15 with w=27rf, we obtain

V (t)=A (t)sin [ l+(RJx(t)vx(t)+Ry(t)vy(t)]C-l (cOsn (t)

-1 /2...[j2t)j2()] +V(t)c (tlsin6 It)l [t-Tn(t)]+ +S(t).

(16)

We now turn to a brief discussion of the phase term Sn

and the amplitude A in Eqs. 15 and 16. If Rayleigh reflectionn

theory 7 is used, then, at any one reflection of the nth ray

from a horizontal boundary,

B exp(i)= (- (cw/C) 2Ccos 2 e - cos 2w1/ 2 1
n n iw ]

2 2 1/2 2 -1r/2 1-1
× (0 /Pw)+ (Cw/Cm) 2-cCos 2ew ]-Cos2w w] (17)

In Eq. 17, the subscript w refers to the water while m refers

to the medium on the opposite side of the reflecting boundary

either the ocean bottom or the atmosphere. The quantity Bn

is the amplitude loss at a reflection of the nth ray, c. is

the shift in phase there, and the symbol i represents the

imaginary unit. By Snro' l's law,

cose w=[Cw/C(tn)]cosen (tn)=[Cw/C (t)]cosen (t). (18)

When Eq. 18 is substituted into Eq. 17, it becomes apparent that

•). 7,
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amplitude loss and phase shift at a boundary reflection, in

"yeneral, are time-dependent. In addition, the number N of

bottom reflections and the number M of surface reflections of

the nth ray may be time-dependent, so that we should write

N=N (t )=N (t) and M=M It )=M Wt). If we make the usualn n n n nl n

assumption of no amplitude loss and a 7r-rad phase shift at a

surface reflection, then the contribution of all boundary

reflections to A (t) is exp [N (t)lnin(t)] and Sn(t) is given by
n n bnt) n

S (t) = N (t)s (t)+'STM (t), (19)
n n n n

where B and e. refer only to a bottom reflection. If the nth
n n

ray experiences no bottom reflections at time t, then N (t)-0;
n

if it does not reflect from the surface at time t, then M n(t)0.

Of course, other reflection models may be considered. If, for

8.example, a frequency-dependent model is employed, then the

variation of frequency with time, as described in Eq. 13, must

be includ1ed.

When the sounu source and ocean medium are stationary,

when sound speed is depth-dependent only, and when the ocean

channel possesses horizontal boundaries, the contribution of

spreading loss L to amplitude is L-I 2 , where L has been
9,1(..

written as

L IR(sinOx /cosO 0)R/Do . (20)

In Eq. 20, 0 is the ray angle at the source, 0 x is the ray
0

angle at the receiving point, and R is the horizontal distance

between source and receiving point. It has been shown that

...... .... .
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a non-stationary ocean requires corrections in the spreading loss,

because a moving ocean causes an omnidirectional source to

become directional and because rays are no longer normal to

wavefronts. However, the corrections are negligible in an

isospeed, uniform-current medium when the ratio of current speed

to sound speed is small. Since there exist some analogies

between a moving source and a moving medium problem, corrections

in Eq. 20 are expected here also. However, in subsequent sections,

source speed will be a small fraction of the speed of sound so

that Eq. 20 will be assumed to be applicable. In using Eq. 20

for the nth ray, R should be replaced by R(t)=R[F (t)] and
n

0 0 by e (t)=O [F n(t)], where F (t) is given by Eq. 11 and where
- n n 1 /2

R=(R+R )I/2 Further, from Snell's law, Isin I should beSx y x
2 2- 1/2replaced by {l-[CR/c(t)] cos a (t1 1, where c is the sound

relce y l[R n 'R

I speed at the fixed receiver. The contribution of spreading loss

to amplitude is, therefore,

"n = R(t) 1- [cR/C (t)] C (t) cOS n(t)

-1/2
StR(t)/)en(t) (21)

Thus the amplitude of the nth ray at the receiver is

SAn (t) = Ln (t)exp[Nn (t)lnBn (t)] (22)

-1/2where B is given by Eqs. 17 and 18, and L is given by Eq. 21.
n n

With the phase term S and amplitude A known from Eqs. 19
n n

and 22, respectively, the receiver arrival Vn associated with

/

\I



the nth ray is known from Eq. 15 or 16. In order to determine

the total acou3tic field at the receiver, we elect to add and

subtract the factor wt in the argument of the sine in Eq. 15.

The quantity w is any constant, but arbitrary, circular

frequency. Then

V (t) A (t)sin[wt+n (t)] , (23)
n n n

where

•n~) •n~~t•t•R(t)Tn(t)+Sn(t) .(24)
n (t Rn (tt'tWRn n n

The total field may be expressed as

A(t)sin[wt+4 (t)] = EA (t)sin[wt+ý (t)] , (25)
n n

where the amplitude A and phase P can be determined from the

following system of equations:

2 2
2(t) (t)sinýn(t)] + [1An (t)cosn(t) (26)

-- 1l
sin (Ht) = A (t) A nt) siný n(t) , (27)

cos P(t) = A (t) AnA(t)cosqn(t). (28)

Since A(t) and ,(L) are time-dependent, it is apparent from

Eq. 25 that the total acoustic field at the receiver is not a

sinusoidal function of time. However, it may be interpreted

as a signal with constant circular frequency w=27rf, having

time-dependent amplitude A and phase D. If f is chosen to be
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the frequency emitted by the sound source, then !=w=2nf in Eqs.

23-28. A second pr'ocedure, similar to that of Ref. 4, i, to

average frequency over the first N' significant ray arrivals

and over a time interval T. If we define

A• •(N,)-IN•I- t'+T ,.

[Aw ( [w (t)-w•dt , (29)
n=o Rn

where t' is some constant value of receiver time, then u should

be replaced by w+Aw in Eqs. 23-28.

The above results are too general to predict the presence

of shadow and caustic boundaries at any instant of time. These

boundaries are important, however, since they can be expected

to lead to discontinuities in Doppler shift and diffraction

effects. Once sound speed, receiver location, source path, and

source velocity are selected for use in a particular application, 1l
these pbenomena can be examined. :1
II. THE ISOSPEED CHANNEL

In some special situations, the moving source problem

simplifies greatly. To illustrate the general treatment of

Sec. I, we consider here the case of a constant sound-speed

medium of depth H, bounded by a horizontal surface and bottom.

Both the sound source and receiving point are located on the

ocean bottom, and the source is assumed to follow a straight-

I
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line path with constant speed v. Shadow and caustic boundaries

cannot occur in an isospeed medium. Suppose, for definiteness,

that the source AS is located a distance R from the receiving

point 6 at time t=0. Also, let the angle a in the ocean

bottom describe the direction of the source trajectory where

"=(O). The source--receiver geometry appears in Fig. 2(a),

while Fig. 2(b) shows the first two rays from the moving source

to the receiving point. Note that the index n equals the number

of bottom reflections of the nth ray, and that the source

location changes with n.

From geometric considerations, the distance between B

and c at time £ is given by

S2 A2 11/2
Rit) IR(t)i R + (vt) +2Rvtcosal (30

The scalar projection of v onto the negative direction of the

nth ray (from receiver to source), given by Eq. 9, may be

written as

A 1r 2 _R2 2 1/2 ^ cO
v (t)=r(t) -v (t) cos0 n(t)=v IR (t)-R sin ]i/R(t) ()

(31

where f sgn[vt+Rcosa] and where 0 (t) describes the angle
n

at the source of the nth ray at time t. As discussed in

Sec. I, the frequency of the nth ray detected by the receiver

at time t is not the frequency associated with the source

position at t but, rather, is that corresponding to the source

position at time tn = t-T n(t), where T n (t) = T n[F n(t)] by

application of Eq. 11. Under such a transformation, Eq. 31

with t=tn may be expressed as
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VP (t).v[ (t)[ 2 sir 2 ] 2/ (t)1cos ) (32)

=$v (t(-t), (2

where R(t)=R(F (t)] and 6 (t)=O [F (t)]. The corresponding
n ni n n

frequency at the receiver is, analogous to Eq. 14,

f Rn(t)=f 11 +6V 2 (t)-R sin a] /R/(t) -Cos; n(t• ,

(33)

where c is now a constant. Since the travel time of the nth .

ray is

2 211/2 -1T n(tn) n (t n)+[2(n+l)HJ C -3)I c , (34) .

F (t), given by Eq. 11, can be determined explicitly.

Specifically, from Eqs. 10,11,30, and 34,

F1 -2 -1 2 2 2
n =n~ ~ - no+2 t no~M(t-

+ R(2 c- 2cos2:] 1/2 T , _2)-1/2 (35)

where M=v/c is called the Mach number and

2/c2 + 2(n+l)H/c]2/2T no R[ (I (36 )

is the travel time of the nth ray if the source were stationary

"at (x,y)=(0,R). The lau. 1ch angle 0 (t) may be determined from
n

cosn (t)=R(t) R2 (t) + [2(n+l)ll 21-(37

where R(t) can be found from Eqs. 30 and 35 with t=tn. Thus,

from Eq. 33, the corresponding circular frequency at the

receiver is
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r2 2 2 1/21 2 M2 2
WRn (t) = wLjTn°+M Fn(t)+ 2 RM(cosc)Fn (t)/c 1 [Tn+M2F (t)Rn o nno n

2RM(cosalFn(t)/c]1/2 2 2 2
+ 2M~csa) W C I +ýM[R (Cosaz) /c4-M F Wtn n

1/2 14 2RM(cosa)F (t)/c ] , (38)
n

L where F~ (t) is given in Eq. 35.

We now make the usual assumption of no amplitude loss

and a 7r-rad phase shift at a surface reflection. If Rayleigh

reflection theory is used at each reflection of the nth ray

from the horizontal bottom, then the use of Eqs. 18 and 37

enables us to write Eq. 17 as

B (t)exp[ic (t)] = [(Pm/Pw)-1(cm/Cw) 2 [(t)/2(n+l)H2]2
n n -[M)2nlH 2

x [-(c w/C) / ] [(PmlPw)+ (C M/Cw ) -(R(t)/2(n+l)HIw m m-

2 11/2 -1
x [1-(c w/CM) (39)

Although this result could be used in Eqs. 19 and 22, we

choose to make instead the simpler assumptions of a 2-dB loss and

a 7T-rad phase shift at each bottom reflection. Then, the

contribution of all boundary reflections to the ampli zude

-0.lnAn of each ray arrival is 10 ,and the phase Sn, given

by Eq. 19, becomes

S (t) n7T+(n+l)r= 7i(mod 2IT). (40)
n

S!A
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From Eqs. 30, 35, and 37, R and enare known and the contribution

of spreading loss to amplitude is, from Eq. 21,

-1/2() = cI•T2 M2F2 -1/2

Ln n(t) c T +MF(t)+2RM(cosa)F (t)/C, (41)

where k (t) is given by Eq. 35. Thus the amplitude of the
n

rith arrival, given by Eq. 22, becomes

A (t) 1 0.1n L-i/2(t). (42)
n n

With S ,A ,w, and T known, the nth arrival V givenn n •Rn n n

by Eqs. 23 and 24, is

-Qin -1ý 2 2 2 -/
V (t)=10 c T +M F (t)+2RM(cosa)F (t)/c

n no n n

x sin [wt+ý (t), (43)

where

(t)-=, lT2n+M2F2 (t)+2RMn(cosx)F (t)/c 11/2j nT2o +M2Fn F

4-2P'!(cos) Fn (t)/c] I/+ýM[R Cos2a/c+M2Fn (t) +2RM (cosa)
n n

:F-T2+MF (t)+2RM(cos(/)F 1/2n no n n

(44)

The total field is now known from Eq. 25, and its amplitude and

phase from Eqs. 26-28.

III. LINEARIZED MODEL

Under certain assumptions, it is possible to expand Eqs. 43

and 44 in powers of the Mach number M. In particular, an

expansion that keeps only linear terms in M greatly simplifies

these equations while preserving the effect of source motion.

................................. ,-
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When the raxio of source speed to sound speed is small (M<<I),

* such a linearization is valid when restrictions are placed on

time durationand, suL4equently, source movement.

If one performs a linearization in M of Eq. 44, then

+(t-•)t+, (45)
(t)z- 2Mnn w(cosa)Tno 2Mnn w(cosa) t-wTno W Wt~t(5

where

21-1/2
n R/noC +[2(n+l)H/R] 2

A similar linearization of A (t), given in Ec 42, leads ton

A n(t)Z 1 00.in R 1 nn [1-Mnn (cosa)(t/T no-l)J (47)

A further simplification of Eqs. 45 and 47 is possible if H<<R

and n is not too large. in such a case, n z 1-6 and Tn (R/c)(1+6)

wh,&re 6=2[(n+l)H/R] 2<<. If nn is replaced by unity and Tno

by R/c only in those terms containing M in Eqs. 45 and 47, we

obtain

0n(t)Z2MwPc coscs-2Mw(cosa)t-wTn +(W-w)t+'r , r48)

and

A (t)z i0.1n R- fn[l-M(ccsa) (ct/R-±)] . (49)
nn

Of course, the remaining un and Tno terms may be approximated

also, if desired. The corresponding total acoustic field,

given in Eq. 25, may now be expressed as the imaginary part of
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A(t)ex i ýt+l-'t)] 1-M (coaa) (Ct/R-l)]eXp i [Zt+2MwRc" i

xcoso-2Mw(cosa)t+(W-w)t 10 R0"i"npi"-WT no +W).

(50)

Although the summation in Eq. 23 contains an infinity of

terms, its rapid convergence permits its termination. In

Eq. 50 we have kept N' terms where, for example, N' miaht

be chosen so that the amplitudes of subsequent arrivals

are less than 0.01 that of the n = 0 ray. The termination

justifies the earlier assumption that 6 is small when H<<R.

The summation in Eq. 50 represents the approximate total field

for a stationary source at (x,y)=(0,R). Since this location

corresponds to t=0, we shall write the corresponding amplitude

and phase as A (0) and •o(0), respectively. Thus,

N'_-1 - O.ln R-l

Ao(O)exp i Do(0)Z 'S- 10 nn expi(-wT no+7r). (51)

The reason for our selective approximations in Eqs. 48 and 49

is now clear: we are able to express the complex form of the

total field as the product of a source-motion factor and the total

field for a stationary source, where each term in the latter is

exact. If a term expiwt is cancelled on each side of Eq. 50

and if Eq. 51 is employed, a comparison of the moduli and

arguments in the resulti.ng equation leads to the following

linearized approximations for the total-field phase and

ampiitude

Sw/
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1.
C 0 (0) - 2Mw(cosa)(t-R/c)+(w- w)t , (52)

andF.
A A(t)- Ao (0) [1-M (co a ) (Ct/ P- 1)] (5•3)

Since w is usually large, Mw ik not small even for a slowly

moving source. Thus Eq. 52 suggests that the effect of source

motion on phase variation is significant, in qeneral. However,

the effect on amplitude variation is negligible if Me/R-<l.

If w is chosen to be the cizcular frequency w at the

source, then Eq. 52 simplifies to

S(t) - 1l(t)k zo(0)-2Mw(cosa)(t-R/c). (54)

A second procedure, outlined in Sec. I, is to average frequency

over the first N' significant ray arrivals and over a time I
interval T. When we carry out an average analogous to Eq. 29,

we obtain

Awz - Mw(cosa) , (55)

where the right-hand side is just the D)pplcr shift associated

with the n=O ray. If we take w=w+Aw, with Aw oiven by Eq. 55,

then Eq. 52 gives

•(t) = • 2 (t) ~ (0) - 2Mw(cosa) (t/2-R/c). (56)

We observe from Eqs. 54 and 56 that both 0I and 02 are

approximately linear in time, where we have assumed that Itl

/ /
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is small. Furthermore, the total-field phase is the same for

SCA and a = - a , so that it is necessary to examine phase

only for 0<a<c rad. Differentiation of Eq. 54 with respect

to time leads to the observation

SI I
* t) - l(t ) (57 )

0 0

Thus, the slopes of the 1i versus time curves for a=° and

'X=7-c° are equal in magnitude but opposite in sign. In other

words, source trajectories with a component approaching

toward or receding from the receiving point at the same rate

give rise to the same magnitude of phase-rate. These comments

apply to t2 as well. If Eq. 56 is differentiated with respect

to receiver time and compared with the derivative of Eq. 54,

we see that

•i(t) 2- 242(t) . (58)

Therefgre, the rate of change of phase with averaged frequency,

21 is only half that of the phase with unaveraged frequency,

The relative phases 4i-o and (P-'o appear versus time in
1-0 2-0

Figs. 3 and 4 for selected values of the source-trajectory
angle u in deg. For these figures we selected the parameter

-i
values R=10 km, c = 1500 msec , v = 10 kn, and f = 350 hz.

Although the water depth H does not appear in Eqs. 52-58, it

will be recalled that our results assume '-hat H/R is small.

-i.
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With the above parameter values and H w 100m, Eqs. 52, 54, and

56 were found to be in excellent agreement with the exact phase

given by Eqs. 26-28 and Eqs. 43-44, when the time interval was

restricted to approximately -5.0<t<5.0 min. However, Figs. 3

and 4 show a time interval of half this amount. The lower

horizontal axes indicate the directed distance r in )cm traveled

by the source from its position at time t - 0. Figure 3

illustrates the linearity of phase over a relatively short

time interval and the fact that the slopes of the phase curves

F 0for a=o and a=(180-ao) are equal in magnitude but opposite

in sign. Note in Fig. 3 that, over the 5.0 min interval

shown, the phase variation is as much as 730 cycles, where

the maximum variatioln occurs when the sound source follows

a radial path (a=0 0 ,1800). When a=90 0 , the source trajectory

is tangent to the circumferential cirection at t= 0 and the

approximate phase variation is zero as expected, since the

source-receiver range is virtually unchanged. Figure 4 is

similiar to Fig. 3, but shows the relative phase '2 -4 when2 0
average Doppler shift is included. In agreement with Eq. 58,

curves in Fig. 4 have only half the slope of corresponding

curves in Fig. 3.

Primary phase is phase modulo one cycle, and will be

indicated in this paper by the subscript p. Both the primary

relative phases [El-)o] and [t appear in Fig. 5 over

the time interval -5.0<t<5.Osec when the source moves radially

outward from the fixed receiver (a=0 0 ). As in Figs. 3 and 4,



- 22 -

it is observed that phase variation is decreased by one-half I:

upon inclusion of an averaged Doppler-shift frequency. The

two curves are qualitatively similiar to corresponding results

in Ref. 4, even though phase variation in that reference was

calculated for a deep-water sound-speed profile and for k

different parameter values.

IV. THE LONG TRAJECTORY

Under the assumptions of the previous section, we now

consider the source to follow a long straight-line path with

constant speed v. We let d denote the distance of closest

approach of source to receiver and let t=0 describe the time

at which 3 is the distance d from A . Suppose now that

the source is a distance R(to) from the receiver where c(to)

is the corresponding angle subtended by the source-path and

receiver-source directions, as shown in Fig. 6. In Secs. II

and III, R represented the initial distance between source and

receiving point at t=O, and (o(0) described the phase of a

stationary source at a distance R from the receiver at

Limne, t=0 in Eq. 54. In that equation, w was chosen to be the

circular frequency at the source, and we shall restrict our-

selves to this case here. The analog of Eq. 54, for t expanded

about t rather than zero, is
0

t)(t) Co(to) - 2Mw[cosa(t )] (t-to )-R(t )/c], (59)

where It-toi<<l and Po(t 0 ) is the phase of a stationary source

at time t=to. Now, let to be the time required for 8 to travel
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from the point P of closest approach to L to the generic

position shown in Fig. 6. If the distance traveled is r and

if the speed of £ is v, then r=vto. Both R(tO) and a(to)

are found from the following expressions:

2 2 21/22221/R(t [d2+vtI c[(d/c)1/2 (60)

and

cosa(to vt d2v[d2 2t2 -1/2 2Mt[(d/c)2+g2" 2 -1/2

0  to] "

(61)

Using Eqs. 60 and 61, Eq. 59 may now be expressed as

D(t) ~)o (t )+2M 2wt _2M2 Wt [t(d/c) 2 +M2 t 2 ]- 1 /2(t-to) (62)
0 0 0 0 0 0

for It-t_ 0 < 5 min and H/R<<l. If we let '(t,t o)-(t)-oo(tO)

denote the phase relative to that ."= a stationary source at the

position corresponding to t=tO, then Eq. 62 can be rewr".tten

as I
S1/2

~itt )Z 2Mt -1/~2]o(t't -2M2Wt C(d/c (t-to)-i (63)

A

In Fig. 6, primary phase [((t,to)] is sampled for seven
o p

20 sec intervals over a period cf 2 hours or a source travel of

approximately 37 km, for d = 10 km. When t zO, it is seen
0

that the effect of a slowly moving source on phase variation

is negligible. Such a result is consistent for a source path

tangent to the circumferential direction, as discussed in the

previous section and shown by the a=90° curve in Fig. 3. As

-/J
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t I increases from zero, a steady increase in the magnitude
0

of phase variation is observed. For large values of Itit

the source is effectively moving along a radial path from the

fixed receiving point, where maximum phase variation was

predicted in Fig. 3 by the a=O0 and a=180 0 curves.

A continuous representation of approximate relative

cumulative phase, rather than primary phase, can be formulated

since it is reasonable to assume that all time derivatives of

the phase exist in some neighborhood of each value of to.

Then, to within the order of the approximations made in the

previous section, Eq. 62 represents the first two terms of

the Taylor series for c(t) about the point t=t . Since thei0

Taylor coefficient of (t-t ) is $ (t ), we have from Eq. 62

that

P '(t) z 2mWto[ (d/c) 2 +M2 t2]-/ 2  . (64)

Integration of this result with respect to to gives

-2wCdc)2 2 2 1/2(D(t ) •-2w'[(d/c)2+M2'to /+C, (65)

where C is a constant of integration. Because we are

interested only in relative cumulative phase, we select

C = 2wd/c in order to make 4(0) = 0. In addition, we write

t in place of t to obtain0

2 2 2 1/2d(Pt) z-2w[(d/c) +M t 2 + 2wd/c . (66)

!-or larc;e values of It!, Eq. 66 becomes
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A (t) Z-2MwIt! + 2'wd/c (67)i ~A"

Thus the magnitude of the rate of phase variation is

approximately constant for large ItI, as observed in Eq. 62

or in Fig. 3 as a approaches 00 or L800. Further, Eq. 67

may be construed as an upper bound on the cumulative phase.

K iThe approximate cumulative phase, given by Eq. 66, is

plotted as the solid curve in Fig. 7 over an eight-hour time

period or a corresponding source-travel distance of 148 km.

The phase is observed to be hyperbolic and its asymptotes,

given by Eq. 67, are graphed as dashed lines. The figure

reiterates previous conclusions. For t Z 0, the source is

near its point of closest approach to the receiver, and phase

variation differs little from zero. As Itl increases, a

rapid increase ii variation is observed, which approaches a

constant when the source trajectory is effectively radial

relative to the receiving pcint. The cumulative phase, Eq. 66,

is a global result that was obtained from a local result, Eq. 62.

Since the latter is only approximate, Eqs. 66 and 67 need not be

accurate for very large values of It'.

V. SUMMARY

This paper presents an cnalysis for the treatment

of the effects of sound-source motion on the total acoustic

field at a fixed receiving point in the ocean. The source

emits a cw signal, and may follow an arbitrary path in three-

dimensional space with arbitrary velocity. Sound speed is
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taken to be depth-dependent. Using ray theory, it is explained

how source motion affects ray geometry, frequency, travel time

and spreading loss, and boundary loss and phase shift. It is
shown ho., the movement of the sound source leads to a received

signal that may be interpreted as a waveform of arbitrary

frequency whose amplitude and phase are time-dep(ndent.

Application of the general theory is made to a constant

sound-speed channel with horizontal boundaries in which the

sound source and receiving point are located on the ocean

bottom. The source is assumed Co follow a straight-line

path with constant speed. A simplified linearized acoustic

model is developed when source speed is much less than sound

speed and when the ocean depth is much smaller than the source-

receiver range. The results are valid over a sufficiently short

time interval, and the effect of Eource motion on acoustic phase

variation is shown to be highly siqnificant. Both primary and

cumulative phase are examined as functions of time for various

directions of the source trajectory. The same magnitude of

phase-rate is obtained for source trajectories with a component

approaching toward or receding from the receiver at the same

rate. Maximum phase change occurs for radial source motion,

while minimum change occurs for circumferential motion. For

selected parameter values, acoustic phase is shown to change by

nundreds of cycles over a time interval of only a few minutes.

When the arbitrary frequency, discussed above, is taken to be

• , , •,, 1'•,
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the average Doppler-shift frequency associated with the first

ray arrival, the phase variation at the receiver is only one-

half the variation when the frequency is chosen to be that of

the signal emitted at the source.

The above phase results, which are local in time, are

extended to the global case in which the sound source follows

a long straight-line path at constant speed. When the source

is near its point of closest approach to the receiver, phase

variation is small. However, a steady increase in variation

is observed as the source departs from this point. An

approximate formula for cumulative phase is developed with

the result that this phase is a hyperbolic function of time.

The asymptotes of the hyperbola provide a bound for the

approximate cumulative phase and an, estimate to it when the

sound-source location is far from its point of closest approach

to the receiver.

[ ACKNOWLEDGMENT

This work was supported by Code 222, U.S. Office of Naval

Research. This paper is taken in part from a thesis to be

submitted by G. M. Jacyna in partial fulfillment of the

requirements for the Ph.D. degree in the Department of

Mathematical Sciences at Rensselaer Polytechnic Institute,

Troy, New York 12181.



- 28 -

REFERENCES

1 V.W. Pidgeon, "Doppler dependence of radar sea return," J.

Geophys. Res. 73, 1333-1341 (1968).

2 R.S. Sargent, "Moving target detection by pulsed doppler

radar," Electronics 27, 138-141 (1954).
31

O.P. McDuff, H. M:ott, and C.S. Durrett, Jr., "Back scattering I
measurements of a slowly moving target," I.E.E.E. Trans. on

Microwave Theory and Techniques MTT-12, 541-546 (1964).

SR.P 

. Flanagan , N .L . Weinberg , and J .G . Clark , "Coherent analysis

of ray propagation with moving source and fixed receiver,"

J. Accust. Soc. Am. 56, 1673-1680 (1975).

5
J.G. Clark, R.P. Flanagan, and N.L. Weinberg, "Ray propagation with

a moving source: multipath spreading and boundary effects."

Subr.,itted to J. Acoust. Soc. Am.

6 R.B. Lindsay, Mechanical Radiation (McGraw-Hill, New York, 1960),

pp. 311-321.

S~7
SC.B. Officer, Introduction to the Theory of Sound Transmission

(McGraw-Hill, New York, 1958), pp. 74-82.

8 K.V. Mackenzie, "Reflection of sound from coastal bottoms,"

J. Acoust. Soc. Am. 32, 221-231 (1960).
""Invariance of geometrical

J.T. Warfield and M.J. Jacobson,

spreading loss with changes in ray parametrization," J. Acoust.

Soc. Am. 50, 342-347 (1971).

J'



nr - 29 .

10 E.S. Eby and L.T. Einstein, "General spreading-loss expressio.,"

J. Acoust. Soc. Am. 37, 933(L) (1965).

L.A. Stallworth and M.J. Jacobson, "Acoustic propagation in

an isospeed channel with uniform tidal current and depth

change," J. Acoust. Soc. Am. 48, 382-391 (1970).

It

ii

1



L - -

FIGURE LEGENDS

FIG. 1. Doppler effect and geometry for a moving source and

fixed receiver.

FIG. 2. Geometry for linear, constant-speed source motion and

two typicdl ray paths.

FIG. 3. Relative phase versus receiver time and source travel

-1for selected source angles: w=w, R=10kýn, c=, 0msec

v=10kn, and f=350hz.

FIG. 4. Relative phase versus receiver time and source travel

for selected source angles: ý=w+Aw, R=10km, c=l500msec 1

v=10kn, and f=350hz.

FIG. 5. Primary relative phase versus receiver time and source

travel for the source angle a=0O and w=W and -=W+W,

respectively. Other parameters as in Fig. 3.

FIG. 6. Primary relative phase versus receiver time and source

travel sampled over a 2 hr interval for w=w and d=10 km.

Other parameters as in Fig. 3.

FIG. 7. Cumulative relative phase versus time and source travel

over an 8 hr interval for w=w and d=10 km. Other

parameters as in Fig. 3.
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